Zeta Functions

The Riemann zeta function is defined in Abramowitz & Stegun, Section 23.2.

Riemann Zeta Function

The Riemann zeta function is defined by the infinite sum \(\zeta(s) = \sum_{k=1}^\infty k^{-s}\).

gsl_sf_zeta_int(n)

This routine computes the Riemann zeta function \(\zeta(n)\) for integer \(n, n \ne 1\).

gsl_sf_zeta(s)

This routine computes the Riemann zeta function \(\zeta(s)\) for arbitrary \(s, s \ne 1\).

Riemann Zeta Function Minus One

For large positive argument, the Riemann zeta function approaches one. In this region the fractional part is interesting, and therefore we need a function to evaluate it explicitly.

gsl_sf_zetam1_int(n)

This routine computes \(\zeta(n) - 1\) for integer \(n, n \ne 1\).

gsl_sf_zetam1(s)

This routine computes \(\zeta(s) - 1\) for arbitrary \(s, s \ne 1.\).

Hurwitz Zeta Function

The Hurwitz zeta function is defined by \(\zeta(s,q) = \sum_0^\infty (k+q)^{-s}\).

gsl_sf_hzeta(s, q)

This routine computes the Hurwitz zeta function \(\zeta(s,q)\) for \(s > 1, q > 0\).

Eta Function

The eta function is defined by \(\eta(s) = (1-2^{1-s}) \zeta(s)\).

gsl_sf_eta_int(n)

This routine computes the eta function \(\eta(n)\) for integer \(n\).

gsl_sf_eta(s)

This routine computes the eta function \(\eta(s)\) for arbitrary \(s\).