The F-distribution¶
The F-distribution arises in statistics. If \(Y_1\) and \(Y_2\) are chi-squared deviates with \(\nu_1\) and \(\nu_2\) degrees of freedom then the ratio,
\[X = { (Y_1 / \nu_1) \over (Y_2 / \nu_2) }\]
has an F-distribution \(F(x;\nu_1,\nu_2)\).
-
gsl_ran_fdist(nu1, nu2)¶
This function returns a random variate from the F-distribution with degrees of freedom
nu1
andnu2
. The distribution function is,\[p(x) dx = { \Gamma((\nu_1 + \nu_2)/2) \over \Gamma(\nu_1/2) \Gamma(\nu_2/2) } \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} x^{\nu_1/2 - 1} (\nu_2 + \nu_1 x)^{-\nu_1/2 -\nu_2/2}\]
for \(x \geq 0\).
-
gsl_ran_fdist_pdf(x, nu1, nu2)¶
This function computes the probability density \(p(x)\) at \(x\) for an F-distribution with
nu1
andnu2
degrees of freedom, using the formula given above.
-
gsl_cdf_fdist_P(x, nu1, nu2)¶
-
gsl_cdf_fdist_Q(x, nu1, nu2)¶
-
gsl_cdf_fdist_Pinv(P, nu1, nu2)¶
-
gsl_cdf_fdist_Qinv(Q, nu1, nu2)¶
These functions compute the cumulative distribution functions \(P(x), Q(x)\) and their inverses for the F-distribution with
nu1
andnu2
degrees of freedom.