The Gamma Distribution¶
-
gsl_ran_gamma(a, b)¶
This function returns a random variate from the gamma distribution. The distribution function is,
\[p(x) dx = {1 \over \Gamma(a) b^a} x^{a-1} e^{-x/b} dx\]for \(x > 0\).
The gamma distribution with an integer parameter
a
is known as the Erlang distribution.The variates are computed using the Marsaglia-Tsang fast gamma method.
-
gsl_ran_gamma_knuth(a, b)¶
This function returns a gamma variate using the algorithms from Knuth (vol 2).
-
gsl_ran_gamma_pdf(x, a, b)¶
This function computes the probability density \(p(x)\) at \(x\) for a gamma distribution with parameters
a
andb
, using the formula given above.
-
gsl_cdf_gamma_P(x, a, b)¶
-
gsl_cdf_gamma_Q(x, a, b)¶
-
gsl_cdf_gamma_Pinv(P, a, b)¶
-
gsl_cdf_gamma_Qinv(Q, a, b)¶
These functions compute the cumulative distribution functions \(P(x), Q(x)\) and their inverses for the gamma distribution with parameters
a
andb
.